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Free convection at low Prandtl numbers 

By H. K. KU1KEN-f 
Technological University of Delft, Department of Mathematics 

(Received 11 March 1968 and in revised form 5 February 1969) 

In  this paper it is shown that the free convection boundary layer approaches 
a singular character if the Prandtl number tends to zero. The method of matched 
asymptotic expansions is used to integrate the equations for this extreme case. 
An expression is derived for the Nusselt-Grashof relation and the results are 
compared with those of previous investigations which attack the problem in 
a different way. 

1. Introduction 
The study of free convection under low Prandtl number conditions has received 

the attention of a considerable number of authors. The reason for this is quite 
obvious, as low Prandtl numbers are realized by liquid metals which are known 
to have a large coefficient of heat conduction. The free convection cooling with 
liquid metals has important applications, e.g. in nuclear reactors. 

The methods of solution employed previously may be divided into two classes. 
The first class of methods is concerned with the integration of the original partial 
differential equations by means of the integral method of Kbrm&n-Pohlhausen. 
Examples may be found in Eckert (1950) and Braun & Heighway (1960). The 
advantageous side of this method is that it gives results which display the 
Prandtl number explicitly. Disadvantages are its inaccuracy and its inherent 
systematic errors. In  the other class of methods ordinary differential equations, 
which are derived from the original equations through a similarity transforma- 
tion, are integrated by means of an electronic computer (Ostrach 1953; Sparrow 
& Gregg 1958a). This may yield exact results; however, for each Prandtl number 
a separate integration of the differential equations has to be performed. The 
results, instead of being represented in one single formula, have to be tabulated. 
Another disadvantage of the method of the second class is the fact that for low 
Prandtl numbers the equations contain coefficients of different orders of magni- 
tude. Numerical integration (Sparrow & Gregg 1958a) shows that this greatly 
affects the velocity profiles. In  a restricted region the velocity gradients are much 
larger than in the remaining part of the boundary layer. It is clear that this 
behaviour considerably encumbers numerical integration. 

Thus it would be desirable to have a method which is free of the objectionable 
features of the two classes, but which maintains the advantages of each, i.e 
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accuracy and explicit Prandtl number. In this paper such a method is developed 
using a singular perturbation technique of the type described in the book of 
Van Dyke (1964). Apart from having the required characteristics just mentioned 
the analysis will reveal much of the anatomy of a boundary layer of free con- 
vection at  low Prandtl number. This is because the method of matched asymp- 
totic expansions exposes the predominant factors in different parts of the 
boundary layer. It goes without saying that the knowledge of these factors at  
low Prandtl numbers is of great theoretical interest. The analysis and its results 
are compared with previous investigations. 

2. Main terms of inner and outer expansions 
It is well known that free convection boundary-layer flow past a vertical iso- 

thermal flat plate is governed by a set of two coupled differential equations 

(2.1) 
d”f d2f (Ostrach 1953), 
dy3  -+3f--2&) dy2 + O = O ,  

2 

d20 dB 
- + 3 v f -  = 0. 
dy2 d7 

The functions f and 8, which are the non-dimensional stream function and 
temperature respectively, have to satisfy the boundary conditions 

f = d f /dy  = 0, 0 = 1 at 9 = 0, 

df /dr-+O,  $ - t o  as r-tco. 

7 is the free convection similarity variable and CT is the Prandtl number 

Here v is the kinematic viscosity, p the density, cp the specific heat and k the 
thermal conductivity. 

An investigation into the limit of a free convection boundary layer for u + 0 
can be developed along two different lines. Braun & Heighway (1960) have 
discussed some aspects of this matter in order to develop a suitable Kkmbn- 
Pohlhausen method for low Prandtl numbers. For the purpose of stating the 
correct boundary-layer conditions, the problem was revisited by Kuiken (1967, 
1968). The first possibility is to investigate the equations (2.1)-(2.4) on a purely 
mathematical basis. Since the different equations involved are strongly non- 
linear, a second way of attacking the problem is advocated in this paper. 

From the numerical solution for r = 0.003 of Sparrow & Gregg (1958u), shown 
in figure 4 (solid line), it can be seen that the velocity distribution for small 
Prandtl number can be considered to consist of two distinct parts. Near the wall 
there is a thin region of large velocity gradients due to viscous effects. In the 
remaining, much wider, region the gradients are small compared with those near 
the wall; in this region the fluid can be considered to be inviscid. 

This viscous boundary layer can be obtained easily from (2.1) and (2.2). 
Suppose that v is constant and that k -+ 00. It is then clear that u + 0. Since the 
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conductivity k becomes infinitely large, it is obvious that the temperature of the 
wall is maintained in the fluid. Thus near the wall we have 0 = 1. As the general 
solution of (2.2) for u = 0 is 

= a+b7, 

this solution can be obtained from the equations by putting a = 1 and b = 0. 
Another aspect of this limiting process emerges if we consider that due to the 

horizontal temperature distribution, the fluid experiences a uniform force in an 
upward direction. Consequently at  some distance from the plate, where the 
viscous stresses may be neglected, the flow has a uniform acceleration in an 
upward direction. This means that there exists a potential flow U which is 
proportional to x$. This follows directly from an elementary law of mechanics. 
So, for u = 0,  the viscous part of the free convection boundary layer is related to 
the Falkner-Skan wedge-flow with a potential flow U = px&. This result has been 
reported briefly already by Lykoudis (1962). 

The considerations advanced up to now make us decide that there is an 
inner expansion, 

(2.6) 

finner =fo(?) +Gl(u)f1(7) + ~ 2 ( u ) f 2 ( l j l )  + 
Binnei = 1 +G(u) 01(7) + e 2 ( ~ )  02(7) + -..> 

(2.7) 

(2.8) 

which is valid in the vicinity of the plate. The boundary conditions at  the 
surface (2.3) apply to the functions of this expansion. The main term of the 
inner expansion fo naturally has to satisfy the differential equation 

For the expansion parameters ci(u) and Ei(u), the following conditions hold: 

lim%1= 0, lim'i+l = 0, co = 8, = 1. (2.10) 

For the integration of (2.9) we lack one boundary condition, since the inner 
boundary conditions (2.3) only supply f o  = df,/dy = 0 at 7 = 0. The third 
boundary condition will be found later through matching with an outer expansion 
to be derived next. 

It has been remarked above that the major part of the low-Prandtl-number 
boundary layer of free convection is inviscid. Free convection of an inviscid 
fluid has been studied by Lefevre (1956). We may anticipate that the first term 
of our outer expansion will be a solution of Lefevre's equations. Introducing the 
new variables 

uJ.0 ci U J O  Ei 

E = 3(18)-bpd, (2.11) 

fouter = 18-'a-'F(O, (2.12) 

Oouter = * ( E ) ,  (2.13) 

the equations (2.1) and (2.2) are transformed into 

(2.14) 

(2.15) 

50-2 
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Indeed, on taking cr = 0, the viscous term d3F/dg3is left out of (2.14) as it should 
be. The forces due to inertia and those due to buoyancy balance each other. The 
flow is not hampered by any viscous stresses. Consequently (2.14) and (2.15) 
are suitable for the description of the outer part of the free convection boundary 
layer. The boundary conditions to be satisfied by the outer functions naturally 
are those depicting the ambient conditions (2.4). So we have 

clF/clf;+ 0, a([)+ 0 as [-tog. (2.16) 

The remaining boundary conditions have to be found through matching with 
the inner expansion. The outer expansions to be analyzed are given by 

F(f;) = G(5) + 81(4 Fl(5) + 8 2 ( 4  F2(t) + * 9 

9(5) = $,(O + a4 91(0 + 3 2 ( 4  + . . . > 

(2.17) 

(2.18) 

(2.19) 

Upon insertion of the outer expansions (2.17) and (2.18) in the equaticns (2.14) 
and (2.15) Fo and 9, indeed turn out to satisfy the equations of Lefevre, 

(2.20) 

(2.21) 

NOW, according to the matching principle (Van Dyke 1964), we have to impose 

(2.22) 

Iim Sinner(y) = limSOu,,, = lim9(f;), 
7-m 5J.0 5J.o 

(2.23) 

for .1 0. Here lim stands for the behaviour of a function in the direction given 
in the formula. In the present analysis, these conditions can be applied best by 
writing (2.17) and (2.18) in terms of the inner variable 7 and expanding the 
expression for small values of cr. Comparison with the asymptotic representations 
(7 -+ m) of firmer and Sin,,, then supplies the remaining boundary conditions. 
Now, assuming that F, and 9, can be expanded as series of increasing powers of 

F, = F,(O) +positive powers of f;, 

9, = 8,(0) +positive powers of 5, 
(2.24) 

(2.25) 

the expansions for small values of n yield (use is made of (2.1 l),  (2.12) and (2.13)) 

fouter = 18-4 cT-qo(o) + O(@)  (2.26) 

ooouter = 80(0) + O(aS) (8 > 0)- (2.27) 

From the fact that the inner expansion (2.7) does not contain any terms with 
a negative power of c we may infer, using (2.22), that 

(r  > - *), 

FO(O) = 0. (2.28) 
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Comparison of the inner expansion for 8 (2.8) with (2.27) gives, according to 

7!+,(0) = 1. (2.29) (2.23), 

In fact, these boundary conditions were also used by Lefevre. 
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5 
FIGURE 1.  Perturbation functions of outer expansion (velocity). 

Hence the zeroth perturbation of the outer expansion must satisfy the system 
of equations (2.20) and (2.21) with the boundary conditions (2.16), (2.28) and 
(2.29). A series solution for Po and 9, valid near < = 0 is (see appendix) 

with a, = - 0.582983, 

b, = 0.13744. 

(2.32) 

(2.33) 

Another quantity of importance is 

Fo( CO) = 1.007366. (2.34) 

Application of the matching rule (2.22) to (2.7), (2.17) and (2.30) gives 

limfo(T) = $742 +lower-order terms of 7, 
n-oo 
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FIGURE 2. Perturbation functions of outer expansion (temperatme). 
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FIGURE 3. Perturbation functions of inner expansion (velocity). 
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which may be written 

(2.35) 

Together with the wall conditions (2.3), equation (2.35) provides a complete set 
of boundary conditions for the integration of (2.9), which yields 

d2f, = 1.069950 at y = 0, (2.36) 

(2.37) 

dv2 

fo(y) N 0.707107q - 0.359348 +exp- as 7 + a. 

0 5 10 15 20 25 30 35 40 

7 

FIGURE 4. Comparisons of Sparrow & Gregg’s (1958a) solution (U = 0.003) 
(continuous curves) with one-term inner and outer expansions (dashed lines). 

0 2 4 6 8 10 12 14 16 

71 

FIGURE 5. Comparison of Sparrow & Gregg’s (1958a) solution (CT = 0.03) 
(continuous curves) with one-term inner and outer expansions (dashed lines). 
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Here exp- stands for terms of exponentially small order. Graphs of the main 
terms of the inner and outer expansions may be found in figures 1-3. 

Before proceeding to the terms of higher order it is interesting to compare the 
results derived up to now with those of the literature. In figures 4 and 5 ,  the 
continuous curves are results of a numerical integration of Sparrow & Gregg 
( 1 9 5 8 ~ )  for CT = 0.003 and u = 0.03, while the dashed curves are based on the 
present analysis. 

It is clear that the inner expansion covers that part of the boundary layer where 
large velocity gradients exist; the outer expansions refer to the small velocity 
gradients. The predominant part of the free convection boundary layer is in- 
viscid and tends to create a uniformly accelerated flow at the surface. However, 
on coming within the range of the viscous stresses a viscous boundary layer of 
forced flow type is created, which in the limiting case of u = 0 is exactly the 
same as a particular Falkner-Skan boundary layer. 

3. First perturbations 
In view of the fact that the first terms of the expansions (2.30) and (2 .31 )  are 

integer powers of 5 we infer that the expansion variables el(u), sl(cr)$ &l(cr), &(u) 
are all equal to u+. 

Insertion of the inner and outer expansions (2.7), (2.8), (2.17) and (2.18) in 
their respective systems of differential equations (2.1), (2.2) and (2.14), (2.15) 
two systems pertaining to the first perturbations follow. For the inner problem we 
have 

d3f1 d?13+3f07-4--+3-f dY1 dfodfl  d?fo +ol = 0, 
dy  d y  dy  dy2  

d2B, - -  dy2 - 0, 

while for the outer problem the differential equations are 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

I f  we first pay attention t o  the temperature, it is seen from (3.2) that 

8, = a,7/. (3 .5 )  

Here we have used the inner boundary condition O,(O)  = 0. The two-term inner 
expansion for the temperature now is 

einner = I +a lTu~ .  (3.6) 

Obviously the asymptotic behaviour of Binner for y --f co is also described by (3.6).  
If for a moment we assume 8,(0) + 0 a two-term outer expansion written in 
inner variables for CT $. 0 gives 

Oouter = 1 + ( 3 a 0 1 8 - ~ ~ + 8 , ( 0 ) ) u B .  (3.7) 
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Comparison of (3.6) and (3.7) gives according to the matching principle (2.23) 

and 

a, = 3a0 18-1 = - 0.84910 

8,(0) = 0. 

The general solutions of (3.3) and (3.4) which satisfy the condition (3.9) can be 
represented near 6 = 0, as 

(3.10) 

9, = b,C-$aoa,C2- ($a&+gb,)f;3+0(&Y). (3.11) 

Writing a two-term inner expansion and a two-term outer expansion for f as 
required by the matching principle 

(3.12) 

Fi = a, + $aoalC + $a,b, 54 + ($aoa, + b,) t2 + C& + &a1 b@ + O(53), 

limfinner N & 4 ( 2 )  - 0.359348 + df1(7 -+ 00)) 
q-*m 

limf,,,,, - $7,/(2)+ 1 8 - ~ ~ ~ + a ~ ( 9 ( 1 8 ) - ~ a ~ ~ ~ + l o w e r - o r d e r  terms of 71, 
540 

(3.13) 

it follows that a, = - (0.359348) (18)) = -0.740174 (3.14) 

and d2f, + 18aa0 = - 1-20081 as 7 +- 00. 
dT2 

(3.15) 

Among the lower-order terms of 7 in (3.13)) a term occurs which originates from 
the expansion of F, (3.10). This is the term 

@,~,7 , / (2 )  = 0.457687. (3.16) 

The asymptotic behaviour of fl(7) was found to be, after integrating (3.1) with 
the inner boundary conditions (2.3) and the one found through matching (3.15), 

fl(7) N - 0-60040572 + 0.457687 - 0.4385 +exp- as 7 + co. (3.17) 

It is evident that once the condition (3.15) has been imposed the term (3.16) 
appears automatically in the asymptotic behaviour (3.17). 

The fact that both coefficients of 7 in (3.16) and (3.17) are results of completely 
different integrations gives a valuable means of determining the accuracy of the 
numerical work. Apparently a t  least five decimal places are significant. 

For the skin friction an important figure is 

d2f, = - 1.001023 at 7 = 0. 
dT2 

(3.18) 

The system of equations (3.3) and (3.4) is to be integrated with the outer boundary 
conditions (2.16) and with F,(O) = a,-((3.10) and (3.14))-and 8,(0) = 0-(3.9). 
This integration supplies the numerical values of the remaining constants b,  
and c1 of the expansions (3.10) and (3.11). 

For subsequent use, the value of b, will be given here: 

b, = 0.31445. (3.18) 

Another quantity of importance is 

F,(co) = - 0.10867. (3.20) 

Graphs of the first perturbations can be found in figures 1-3. 
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4. Second perturbations 
Inspection of the expansions (2.30) and (3.10) shows that the second perturba- 

tion is influenced by such terms as Eg, <*, etc. A three-term outer expansion for 
f and 0 gives for the term following at 

fouter = d{2-%3%0yt+ 2 - i ~ 3 f 7 ~ , b , , y ~ +  lower-order terms of y]. (4.1) 

As a consequence the expansion variable e2(cr) of the inner expansion should be 
u0. Consideration of an expression for OOouter analogous to (4.1) suggests that 
E 2 ( ~ )  be merely o as the fractional powers enter the outer expansion for the 
temperature in a much later stage. So, for the second perturbation of the inner 
expansion, we merely have a differential equation for f 2 ( y )  

dY2 - + 3 f  dY2 - - 4 - -  d.fodf2+3d2f,f = 0. 
dy3 'dy2 dy dy dy2 

On account of the matching principle this equation must have an asymptotic 
behaviour coinciding with the expression between brackets of (4.1). Using the 
asymptotic expansion (2.37) offo the solution of (4 .2)  for large values of 17 has to 
satisfy the equation 

Here terms of exponentially small order have been omitted and p is the constant 
0.359348. This equation is known to have the general solution (Morse & Feshbach 
1953) 

d f i  = A H [ - $ , 4 ; / , 9 ] + 4 & 4 - 4  S . p 2 ] ,  27 (4.4) 
d7 

where 7 = 233-4ip + 2 4 ~  and H is the confluent hypergeometric function. Using 
the asymptotic expansion of the confluent hypergeometric function (Slater 1960) 

(4.5) 
it  can be shown that the highest-order terms of df2/dy for y --f 03 are 

(7 - p J 2 ) + ,  (7 -p$)*,  etc. (4.6) 

It, is thus proved that matching with the outer expansion (4.1) is possible. We 
confine ourselves to these qualitative remarks about the second perturbation 
of the stream function, since our main concern is the problem of heat transfer 
for which numerical results are important. 

With respect to heat transfer it is possible to derive an important result from 
the values obtained above. Proceeding along exactly the same lines it can be 
shown that the expansion variables to be used now are 

- 
B3(IT) = E2(U) = S2(u) = S2(u) = u. 

02(7) = "27. 

The inner expansion for the temperature then yields a solution 

(4.7) 
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An evaluation of OOouter at the wall gives for the coefficient of v 

3( l8)-2blq + lower-order terms of q. 

a2 = 3(18)-$b1 = 0.45799. 

(4.8) 

Thus the constant a2 in (4.7) is proved to be 

(4.9) 

With respect to this, it  is interesting to note that the term with t2 is quite naturally 
left out of the expansion (2.31). If not, such a term would have produced a term 
with r2 in (4.8), thus inhibiting the matching. 

5. Results 
The most important result to be given in problems of the present type is an 

expression for heat transfer. This can be presented most conveniently by intro- 
duction of the local Nusselt number 

and the local Grashof number 

Here T, is the wall temperature, T, is the ambient temperature, g is the accelera- 
tion due to gravity, ,L3 is the coefficient of thermal expansion and x and y are the 
longitudinal and the normal co-ordinates respectively. These numbers are 
traditionally combined in one expression which in our case leads to 

or = 0.60040- 0.32385~4 + O(V). 
(G,V2)t 

(5.4) 

A comparison with the results of Sparrow & Gregg (1958a) may be found in 
table 1. 

The expression 

91 = 1.0699496 - 1.001023~4 + O(a3) 
dY2 7=0 

(5 .5 )  

is also of interest, as this quantity is related to the skin friction. Again the values 
of table 1 allow a comparison with figures of Sparrow & Gregg. It is seen that the 
figures for heat transfer are in closer agreement than those referring to the skin 
friction. This is to be expected on account of the different orders of the truncation 
errors in (5.4) and (5.5). 

The coefficients of (5.4) and (5.5) are all related to the inner expansion. It is 
worth while, therefore, to present an expression for f(m) which is related to the 
outer expansion 

f(m) = 18-~~-8{1.007366 - 0.10867~: + O(V)). (5.6) 



7 96 H .  K .  Kuiken 

Sparrow & 
0- Gregg Present 

0.003 1.0223 1.0151 
0.008 0.9955 0.9801 
0.020 0.9590 0.9284 
0.030 0.9384 0.8966 

Sparrow & 
Gregg Present 
0.5827 0.5827 
0.5729 0.5714 
0.5582 0.5546 
0.5497 0.5443 

TABLE 1 

f 

Sparrow & 
Gregg Present 

8.7060 8.8763 
5.4018 5.4152 
3.4093 3.4065 
2.7878 2.7710 

6. Concluding remarks 
The problem considered in this paper resembles in many respects the already 

classical investigation into the higher perturbations of two-dimensional forced 
flow of a viscous fluid along a surface. In  the latter problem the non-dimensional 
boundary-layer equations display the term R-l in the viscous term, R being the 
Reynolds number. Van Dyke (1962) showed that the interaction of the boundary 
layer with the inviscid fluid requires the expansion variable R-i. 

The present problem shows the same characteristics. In equation (2.14) the 
viscous term is multiplied by CT. However, the expansion variable has been shown 
to be C T ~ .  The first perturbations of the outer expansions consequently do not 
experience viscous effects through the equations. It is the matching which takes 
these into account. 

In this paper only the vertical isothermal flat plate has been considered. The 
analysis could of course be repeated for non-isothermal flat plates. It may be in 
order to note one interesting feature of these more general problems. It has been 
shown that the main term of the inner layer represents a boundary layer of 
forced flow type. One might ask what the outer flow is of such a boundary layer 
for a general wall temperature. Or, in other words, what is the maximum velocity 
that can occur along a plate through free convection! 

The answer may be found by applying Newton’s law of motion 

A first integral of this equation is 

Here the condition that U be zero at the leading edge has been imposed. For 
a temperature difference of the form 

T, = T, + Nxm, (6 .3)  

which has received considerable attention (Finston 1956; Sparrow & Gregg 
1958a; Yang 1960), U is seen to be proportional to 

X&m+l). (6.4) 
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Thus every power-law wall temperature is related to a certain Falkner-Skan 
flow. Indeed it can be shown (Kuiken 1967) that for m > - 1 the inner free con- 
vection equation can be converted into the Falkner-Skan equation, thus proving 
the existence of a free convection boundary layer for m > - 1. Previously, only 
numerical calculations (Sparrow & Gregg 1958b) made it plausible that there 
should be a value of m less than -0.8 for which free convection ceased to be 
existent. 

The work described in this paper is part of a Doctoral Thesis, submitted by 
the author to the Technological University of Delft, The Netherlands. The 
author would like to thank Dr J. Reyn for helpful discussions. 

Appendix 
For matching purposes it is necessary that a series solution of (2.20) and (2.21), 

valid for small values of f ; ,  be available. The behaviour of this series solution 
can be studied most conveniently if we rewrite (2.20) and (2.21) as a system of 
five first-order equations. 

We therefore introduce the new variables 

X l ( t )  = 6, %(t) = 4, x3(t) = dFo/df;- 1, 

x4(t) = 9, - 1, x5(t) = d?Yo/d( - c, 

where c = d?Y,/df;I,=,. 
The new system is 

+ #x2xg, 

with the initial conditions xi = 0 for ( = 0. If we consider only the linear approxi- 
mation, we find from (A 3) and (A 2) x1 = x2 = A e%. Apparently ( = x1 = 0 
for t = - CO. After solving (A 5), the solution of the linear part of (A 4) is seen to be 

x3 = r eBt + s e2t, 

3 = l + x 3  = 1+r(+sc+. (A7) a or 

Here r is a constant involving c and s is a general constant of integration. This 
investigation indeed suggests that a series solution for Fo valid near 5 = 0 have 
the form (2.30). The terms following f;: have been found by successive 
substitution. 
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